Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 331

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Failure probability evaluation for steam generator tubes with wall-thinning

Yamaguchi, Yoshihito; Mano, Akihiro; Li, Y.

Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03

The steam generator (SG) is an important component of a pressurized water reactor. In addition, local wall-thinning has been reported in SG tubes. The burst differential pressure, considering both the internal and external pressures from the primary and secondary coolant systems, should be predicted for the failure probability evaluation or structural integrity assessment of SG tubes. In this study, based on the results of burst tests performed in Japan and the United States, we improved the existing burst pressure estimation method for SG tubes with wall-thinning. In addition, as an example of the utilization of the improved burst pressure estimation method, the conditional failure probabilities for SG tubes with local wall-thinning, which is necessary for probabilistic risk assessment and risk-informed decision making, are calculated considering the dimensions of the wall-thinning.

Journal Articles

Multi-modal 3D image-based simulation of hydrogen embrittlement crack initiation in Al-Zn-Mg alloy

Higa, Ryota*; Fujihara, Hiro*; Toda, Hiroyuki*; Kobayashi, Masakazu*; Ebihara, Kenichi; Takeuchi, Akihisa*

Keikinzoku, 73(11), p.530 - 536, 2023/11

In Al-Zn-Mg alloys, suppression of hydrogen embrittlement is necessary to improve their strength. In this study, the distribution of stress, strain, and hydrogen concentration in the actual fracture region was investigated using the crystal plasticity finite element method and hydrogen diffusion analysis based on a model derived from three-dimensional polycrystalline microstructural data obtained by X-ray CT. In addition, the distributions of stress, strain, and hydrogen concentration were compared with the actual crack initiation behavior by combining in-situ observation of tensile tests using X-ray CT and simulation. The results show that stress loading perpendicular to the grain boundary due to crystal plasticity dominates grain boundary crack initiation. It was also found that internal hydrogen accumulation due to crystal plasticity has little effect on crack initiation.

Journal Articles

Application of vibrational sum frequency generation spectroscopy to studies of chemical reactions on water surface and actinide interface chemistry

Kusaka, Ryoji

Bunko Kenkyu, 72(4), p.155 - 162, 2023/08

Vibrational sum frequency generation (VSFG) spectroscopy is an optical second-order nonlinear vibrational spectroscopy using ultrashort pulse lasers. Because VSFG spectroscopy is a unique and powerful tool for studying molecular structures of interfaces, it has been widely used in many research fields. However, there still undoubtedly remains some VSFG research areas that have not studied well, partly because VSFG measurements are not so easily performed in comparison with relatively general spectroscopy methods. This review presented recent applications of VSFG spectroscopy to two research topics: (1) chemical reactions on water surfaces, and (2) actinide chemistry.

Journal Articles

Development of heavy element chemistry at interfaces; Observing actinide complexes at the oil/water interface in solvent extraction by nonlinear vibrational spectroscopy

Kusaka, Ryoji; Watanabe, Masayuki

Journal of Physical Chemistry Letters (Internet), 13(30), p.7065 - 7071, 2022/08

 Times Cited Count:5 Percentile:70.33(Chemistry, Physical)

Journal Articles

Failure estimation methods for steam generator tubes with wall-thinning or crack

Yamaguchi, Yoshihito; Mano, Akihiro; Li, Y.

Proceedings of ASME 2022 Pressure Vessels and Piping Conference (PVP 2022) (Internet), 10 Pages, 2022/07

The steam generator (SG) tube is one of the important components in pressurized water reactors. Flaws such as wall-thinning or stress corrosion cracking have been reported in SG tubes. The burst pressure where both the internal and external pressures from the primary and secondary coolant systems are considered must be predicted to assess the structural integrity of SG tubes. Burst tests were performed by various organizations. On the basis of the test results, failure estimation methods were proposed. In this study, previous burst test data and existing failure estimation methods for SG tubes with wall-thinning or crack were investigated. As a result, the coefficient of the existing estimation method for SG tube with uniform wall-thinning was updated. In addition, failure estimation methods that are suitable for SG tubes with crack or local wall-thinning were proposed by considering the effects of the flaw shape and size on the burst pressure. The applicability of the failure estimation methods was confirmed by comparing the predicted results with the burst test data in actual SG tubes.

Journal Articles

Unstructured-mesh simulation of sodium-water reaction in tube bundle system by SERAPHIM code

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03

An unstructured mesh-based analysis method has been integrated into the sodium-water reaction analysis code, SERAPHIM, in our recent studies. In this study, numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate the effect of the unstructured mesh. The unrealistic behavior appeared in the coarse structured mesh was improved by the unstructured mesh. The numerical result in the case of the unstructured mesh reproduced the peak value of the temperature in the reacting flow.

Journal Articles

Droplet entrainment by high-speed gas jet into a liquid pool

Sugimoto, Taro*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi; Ohshima, Hiroyuki

Nuclear Engineering and Design, 380, p.111306_1 - 111306_11, 2021/08

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

Liquid droplet entrainment by a high-speed gas jet is a key phenomenon for evaluation of sodium-water reaction. In this study, a visualization experiment for liquid droplet entrainment by an air jet in a water pool by using frame-straddling method was carried for development of an entrainment model in a sodium-water reaction analysis code. This experiment successfully provided clear images that captured generation and movement of droplets. Droplet diameter and moving speed were obtained at different locations and gas jet velocities from image processing. The measured data contributes phenomena elucidation and model development.

Journal Articles

Droplet-entrainment phenomena affected by interfacial behavior of a high-speed gas jet into a liquid pool

Saito, Masafumi*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi*; Ohshima, Hiroyuki

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08

In order to provide the data for validation and improvement of the sodium-water reaction analysis code, a visualization experiment on liquid droplet entrainment in a high-pressure air jet submerged in a water pool was conducted. Diameter and velocity of entrained liquid droplets were successfully measured. The effect of a nozzle shape was elucidated.

Journal Articles

Stoichiometry of lanthanide-phosphate complexes at the water surface studied using vibrational sum frequency generation spectroscopy and DFT calculations

Kusaka, Ryoji; Watanabe, Masayuki

Journal of Physical Chemistry B, 125(24), p.6727 - 6731, 2021/06

 Times Cited Count:8 Percentile:44.55(Chemistry, Physical)

Journal Articles

General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries

Lai, W.-H.*; Wang, H.*; Zheng, L.*; Jiang, Q.*; Yan, Z.-C.*; Wang, L.*; Yoshikawa, Hirofumi*; Matsumura, Daiju; Sun, Q.*; Wang, Y.-X.*; et al.

Angewandte Chemie; International Edition, 59(49), p.22171 - 22178, 2020/12

 Times Cited Count:79 Percentile:95.81(Chemistry, Multidisciplinary)

Journal Articles

Journal Articles

Development of lanthanide and actinide studies toward interface chemistry using vibrational sum frequency generation spectroscopy

Kusaka, Ryoji

Hosha Kagaku, (41), p.31 - 33, 2020/03

This commentary article introduced researches involved in encouragement award 2019 of the Japan Society of Nuclear and Radiochemical Sciences. Vibrational sum frequency generation (VSFG) spectroscopy and interfacial studies of solvent extraction of lanthanides and actinides using VSFG spectroscopy were described.

Journal Articles

Development of numerical analysis code LEAP-III for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00353_1 - 19-00353_6, 2020/03

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

JAEA Reports

Biosphere assessment methodology commonly applicable to various disposal concepts

Kato, Tomoko; Fukaya, Yukiko*; Sugiyama, Takeshi*; Nakai, Kunihiro*; Oda, Chie; Oi, Takao

JAEA-Data/Code 2019-002, 162 Pages, 2019/03

JAEA-Data-Code-2019-002.pdf:2.78MB

The radioactive waste generated from Fukushima Daiichi nuclear power station (FDNPS) accident have features such as wide range of radioactivity level (from low to high) and huge amount etc. It would be necessary for the waste from the FDNPS accident to develop suitable disposal concept and to be disposed safely and reasonably. When considering such appropriate disposal concepts in site-generic phase, it is necessary to appropriately develop models and parameters depending on the disposal concepts, such as disposal depth and specification of engineered barrier. In addition, it is desirable to evaluate the safety of repository with common models and parameters independent on the disposal concepts. In the safety assessment of disposal, it is useful to show the difference in performance of repository with "dose" as an indicator of safety assessment. Biosphere model and parameter set and flux-to-dose conversion factors calculated using them are originally dependent on the disposal concepts. However, the biosphere models and the parameter set in safety assessment of near-surface disposal, sub-surface disposal and geological disposal are prepared in each case, and are different according to the age and purpose of the discussion. In this study, an example of biosphere model and parameter-set of groundwater sceinario commonly applicable to various disposal concepts were shown, to calculate flux-to-dose conversion factors, as common indicators independent to disposal concept. And, a set of flux-to-dose conversion factors was also calculated by using the commonly available biosphere model and parameter set. By applying the flux-to-dose conversion factors, it is possible to compare the performance of disposal concepts to the waste generated from FDNPS accident, focusing on the parts depending on the disposal concepts.

Journal Articles

Mechanism of phase transfer of uranyl ions; A Vibrational sum frequency generation spectroscopy study on solvent extraction in nuclear reprocessing

Kusaka, Ryoji; Watanabe, Masayuki

Physical Chemistry Chemical Physics, 20(47), p.29588 - 29590, 2018/12

 Times Cited Count:18 Percentile:70.02(Chemistry, Physical)

Mechanistic understanding of solvent extraction of uranyl ions (UO$$_{2}$$$$^{2+}$$) by tributyl phosphate (TBP) will help improve the technology for the treatment and disposal of spent nuclear fuels. So far, it has been believed that uranyl ions in the aqueous phase are adsorbed to a TBP-enriched organic/aqueous interface, form complexes with TBP at the interface, and are extracted into the organic phase. Here we show that uranyl-TBP complex formation does not take place at the interface using vibrational sum frequency generation (VSFG) spectroscopy and propose an alternative extraction mechanism that uranyl nitrate, UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$, passes through the interface and forms the uranyl-TBP complex, UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(TBP)$$_{2}$$, in the organic phase.

JAEA Reports

Investigative report on the PVC bag burst in the contamination incident at Plutonium Fuel Research Facility; Radiolysis of organic materials and raising of internal pressure

Cause Investigation Team for the PFRF Contamination Incident

JAEA-Review 2017-038, 83 Pages, 2018/03

JAEA-Review-2017-038.pdf:11.37MB

The contaminated accident occurred at Plutonium Fuel Research Facility on June, 2017. The PVC bag packaging in a fuel storage container burst when a worker opened the lid, and a part of contents (uranium and plutonium) was spattered over the room. In order to clarify the cause of the burst, the Cause Unfolding Team collected information concerning characteristics of the contents from any past records and interview. And then we observed and analyzed the contents in a glove box. We also performed experiments on radiolysis of organic materials, degradation of PVC bag by $$gamma$$ radiation, and PVC bag burst. Based on fault tree analysis, finally we concluded that the main gas generation source was alpha radiolysis of the epoxy resin mixed with the fuel powder. We hope that the calculation procedures for the gas generation and the inner pressure transition described in this report can be useful reference for the management of fuel storage in other facilities.

Journal Articles

Evaluation of target-wastage in consideration of sodium-water reaction environment formed on the periphery of an adjacent tube in steam generator of sodium-cooled fast reactor

Kurihara, Akikazu; Umeda, Ryota; Shimoyama, Kazuhito; Kikuchi, Shin

Nihon Kikai Gakkai Rombunshu (Internet), 84(859), p.17-00382_1 - 17-00382_11, 2018/03

Wastage on adjacent tubes (target-wastage) arise from water/steam leak in steam generators of sodium-cooled fast reactors (sodium-water reaction). Target-wastage is likely to be caused by liquid droplet impingement erosion (LDI) and Na-Fe composite oxidation type corrosion with flow (COCF) in an environment marked by high temperature and high-alkali (reaction jet) due to sodium-water reaction. In the previous study, the authors quantitatively evaluated the effect of material temperature and fluid velocity on COCF rate, and revealed that COCF was sodium-iron composite oxidation type corrosion from metallographic observation and element assay. In this study, the applicability of new wastage correlations was confirmed for each tube in sodium-water reaction test with straight vertical tube bundle under practical steam generator operation condition. The authors established that the new wastage correlations were applicable to each tube of tube bundle in the above test, and the time progress of wastage was qualitatively investigated for the two penetrated tubes in the period including the water and/or steam blowdown.

Journal Articles

Application of unstructured mesh-based numerical method to sodium-water reaction phenomenon analysis code SERAPHIM

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 84(859), p.17-00394_1 - 17-00394_6, 2018/03

For assessment of the wastage environment under tube failure accident in a steam generator of sodium-cooled fast reactors, a mechanistic computer code called SERAPHIM calculating compressible multicomponent multiphase flow with sodium-water chemical reaction has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

Journal Articles

The Structure of a lanthanide complex at an extractant/water interface studied using heterodyne-detected vibrational sum frequency generation

Kusaka, Ryoji; Watanabe, Masayuki

Physical Chemistry Chemical Physics, 20(4), p.2809 - 2813, 2018/01

 Times Cited Count:14 Percentile:60.51(Chemistry, Physical)

Solvent extraction plays an integral part in the separation and purification of metals. Because extractants generally used as complexing agents for metal extractions, such as di-(2-ethylhexyl)phosphoric acid (HDEHP) for lanthanide extractions, are amphiphilic, they come to the organic/water interface, and the interface plays a crucial role as the site of the formation of metal complexes and subsequent transfer reaction to an organic phase. Despite the importance of the interface for solvent extractions, however, molecular-level structure of the interface is unclear because of experimental difficulty. Here we studied structure of a trivalent europium (Eu$$^{3+}$$) complex with HDEHP formed at HDEHP monolayer/water interface by heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. The study on the HDEHP/water interface enables us to investigate the structure of the interfacial Eu$$^{3+}$$ complex by excluding the migration of Eu$$^{3+}$$ into an organic phase after the complex formation at the interface. The interface-selective vibrational Im$$chi$$$$^{(2)}$$ spectra observed by HD-VSFG of HDEHP/Eu(NO$$_{3}$$)$$_{3}$$ aqueous solution interface in the 2800-3500 cm$$^{-1}$$ region indicate that Eu$$^{3+}$$ at the HDEHP/water interface is bonded by HDEHP from the air side and by water molecules from the water side. To the best of our knowledge, such metal complex structures have not been identified in the organic or water solutions.

JAEA Reports

Phenomenon elucidation experiment for target wastage caused in steam generator of sodium-cooled fast reactor; Corrosion experiment in flowing high-temperature sodium hydroxide environment

Umeda, Ryota; Shimoyama, Kazuhito; Kurihara, Akikazu

JAEA-Technology 2017-018, 70 Pages, 2017/08

JAEA-Technology-2017-018.pdf:9.67MB

In case of the water leak into sodium in a SG of SFRs due to tube failure, reaction jet is formed by sodium-water reaction with exothermic heat. The reaction jet forms highly alkaline environment with high temperature and high pressure, which cause local thinning of adjacent heat transfer tubes (target wastage). In this report, for the purpose of elucidation of target wastage, the authors developed the experimental apparatus and experimental technique which enable the separate evaluation of wastage influence factors, including temperature, impingement velocity, reagent ratio and so on by using high temperature sodium hydroxide as major reaction product and sodium monoxide as secondary reaction product. In addition, the impingement corrosion experiments have been conducted by using high temperature reagents (NaOH and Na$$_{2}$$O). Based on the corrosive data, authors quantitatively evaluated the influence factors of wastage and formulated the average corrosive equations.

331 (Records 1-20 displayed on this page)